首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   7篇
  国内免费   5篇
测绘学   3篇
大气科学   13篇
地球物理   90篇
地质学   80篇
海洋学   35篇
天文学   32篇
自然地理   20篇
  2021年   2篇
  2020年   2篇
  2019年   8篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   12篇
  2014年   11篇
  2013年   18篇
  2012年   11篇
  2011年   11篇
  2010年   18篇
  2009年   21篇
  2008年   11篇
  2007年   18篇
  2006年   20篇
  2005年   8篇
  2004年   11篇
  2003年   4篇
  2002年   4篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有273条查询结果,搜索用时 15 毫秒
61.
Recent observational studies of intermediate-age star clusters (SCs) in the Large Magellanic Cloud (LMC) have reported that a significant number of these objects show double main-sequence turn-offs (DMSTOs) in their colour-magnitude diagrams (CMDs). One plausible explanation for the origin of these DMSTOs is that the SCs are composed of two different stellar populations with age differences of ∼300 Myr. Based on analytical methods and numerical simulations, we explore a new scenario in which SCs interact and merge with star-forming giant molecular clouds (GMCs) to form new composite SCs with two distinct component populations. In this new scenario, the possible age differences between the two different stellar populations responsible for the DMSTOs are due largely to secondary star formation within GMCs interacting and merging with already-existing SCs in the LMC disc. The total gas masses being converted into new stars (i.e. the second generation of stars) during GMC-SC interaction and merging can be comparable to or larger than the masses of the original SCs (i.e. the first generation of stars) in this scenario. Our simulations show that the spatial distributions of new stars in composite SCs formed from GMC-SC merging are more compact than those of stars initially in the SCs. We discuss both advantages and disadvantages of the new scenario in explaining fundamental properties of SCs with DMSTOs in the LMC and in the Small Magellanic Cloud (SMC). We also discuss the merits of various alternative scenarios for the origin of the DMSTOs.  相似文献   
62.
63.
64.
Based upon our characterization of three separate stones by electron and X‐ray beam analyses, computed X‐ray microtomography, Raman microspectrometry, and visible‐IR spectrometry, Sutter's Mill is a unique regolith breccia consisting mainly of various CM lithologies. Most samples resemble existing available CM2 chondrites, consisting of chondrules and calcium‐aluminum‐rich inclusion (CAI) set within phyllosilicate‐dominated matrix (mainly serpentine), pyrrhotite, pentlandite, tochilinite, and variable amounts of Ca‐Mg‐Fe carbonates. Some lithologies have witnessed sufficient thermal metamorphism to transform phyllosilicates into fine‐grained olivine, tochilinite into troilite, and destroy carbonates. One finely comminuted lithology contains xenolithic materials (enstatite, Fe‐Cr phosphides) suggesting impact of a reduced asteroid (E or M class) onto the main Sutter's Mill parent asteroid, which was probably a C class asteroid. One can use Sutter's Mill to help predict what will be found on the surfaces of C class asteroids such as Ceres and the target asteroids of the OSIRIS‐REx and Hayabusa 2 sample return missions (which will visit predominantly primitive asteroids). C class asteroid regolith may well contain a mixture of hydrated and thermally dehydrated indigenous materials as well as a significant admixture of exogenous material would be essential to the successful interpretation of mineralogical and bulk compositional data.  相似文献   
65.
The chemical zoning profile in metamorphic minerals is often used to deduce the pressure–temperature (PT) history of rock. However, it remains difficult to restore detailed paths from zoned minerals because thermobarometric evaluation of metamorphic conditions involves several uncertainties, including measurement errors and geological noise. We propose a new stochastic framework for estimating precise PT paths from a chemical zoning structure using the Markov random field (MRF) model, which is a type of Bayesian stochastic method that is often applied to image analysis. The continuity of pressure and temperature during mineral growth is incorporated by Gaussian Markov chains as prior probabilities in order to apply the MRF model to the PT path inversion. The most probable PT path can be obtained by maximizing the posterior probability of the sequential set of P and T given the observed compositions of zoned minerals. Synthetic PT inversion tests were conducted in order to investigate the effectiveness and validity of the proposed model from zoned Mg–Fe–Ca garnet in the divariant KNCFMASH system. In the present study, the steepest descent method was implemented in order to maximize the posterior probability using the Markov chain Monte Carlo algorithm. The proposed method successfully reproduced the detailed shape of the synthetic PT path by eliminating appropriately the statistical compositional noises without operator’s subjectivity and prior knowledge. It was also used to simultaneously evaluate the uncertainty of pressure, temperature, and mineral compositions for all measurement points. The MRF method may have potential to deal with several geological uncertainties, which cause cumbersome systematic errors, by its Bayesian approach and flexible formalism, so that it comprises potentially powerful tools for various inverse problems in petrology.  相似文献   
66.
67.
68.
We have carried out a small-scale (∼20 l) CO2 sequestration experiment off northern California (684 m depth, ∼5°C, background ocean pH ∼7.7) designed as an initial investigation of the effects of physical forcing of the fluid, and the problem of sensing the formation of a low pH plume. The buoyant CO2 was contained in a square frame 1.2 m high, exposing 0.21 m2 to ocean flow. Two pH electrodes attached to the frame recorded the signal; a second frame placed 1.9 m south of the CO2 pool was also equipped with two recording pH electrodes. An additional pH electrode was held in the ROV robotic arm to probe the fluid interface. Local water velocities of up to 40 cm sec−1 were encountered, creating significant eddies within the CO2 box, and forcing wavelets at the fluid interface. This resulted in rapid CO2 dissolution, with all CO2 being depleted in a little more than 2 days. The pH record from the sensor closest (∼10 cm) to the CO2 showed many spikes of low pH water, the extreme value being ∼5.9. The sensor 1 m immediately below this showed no detectable response. The electrodes placed 1.9 m distant from the source also recorded very small perturbations. The results provide important clues for the design of future experiments for CO2 disposal and biogeochemical impact studies. These include the need for dealing with the slow CO2 hydration kinetics, better understanding of the fluid dynamics of the CO2-water interface, and non-point source release designs to provide more constant, controlled local CO2 enrichments within the experimental area. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号